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For the mixed problem of elasticity theory on tbs deformation of a 
transversely isotropic cylinder, it is proved than in the selection of a 
specific small parameter the zeroth approximation equations agree with 
the bending equations for an elastic isotropic plate based on the Kirchhoff- 
Love hypotheses flj. Certain singularly perturbed contact problems of 
the Signorini type are considered. 

1. We consider an elastic transversely-isotropic cylinder Q = co.{-h/2, hi2) where o 
is a bounded domain in the (a,. r& plane with fairly smooth boundary y. We select the small 
parameter E as follows: &=JfFF, where E is Young'6 modulus of the material in the plane 
of isotropy of the material X$E const, and E' is Young's modulus in the orthogonal direction. 
In a real physical situation the parameter E is small for an elastic cylinder reinforced by 
a family of boron or carbon fibre6 in the direction of the vertical axis, whose axial Young's 
modulus is considerably greater than Young's modulus in the circumferential direction. 

We divide the stress by Young's modulus E, we retain the same notation for these 
dimensionless stresses and using Hooke's law we express the stress in terms of the strain 

Here 

(summation is from 1 to 3 over repeated subscripts), 
modulus E’ and the shear modulus 

b = E’.G’ is the ratio between Young's 
G’ in a direction orthogonal to the plane of isotropy, v 

is Poisson's ratio in the plane of isotropy, and p is the secondary Poisson's ratio, The 
positivity of the strain potential energy results in the constraints o<v< $,a,> 0. b> 0. 

We examine the mixed boundary value problem for the system of equations of elasticity 
theory 

Later, in 
parameter E, 
the stress and 
space with the 

-~ ifi=U* liEtn(G), axj i=l,2,3 (f.2) 

Qi8 lx+=fh,‘2 = 0, W Jya(-h;2, hfp) =L 0 

order to note clearly the dependence of the solution of problem (1.2) on the 
we shall mark the stress and displacement by the superscript 
displacement in the limit problem by aiJo and 

6, here denoting 
uic , We introduce a Hilbert 

standard norm 

F =(u;u= (Ui, Uz, US),Uk E fi'(Q), Uk IyrC-h 1.h 2) -0, k= 1. 2. 3) 

JJ U j;v = j ‘$ (Ui, h.Ui,h_ _t U2)dlj” 

The generalized solution of problem (1.2) is determined in a standard manner /2/ as a 
function USE 1‘ such that for any function UE l-the following integral identity is satisfied: 

a” (UC, u) = -$- s u,~ (u”) e,j (Y) dr1 drz dxa 
0 
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We will study 
(1.3) in the limit 

Lemmal. For 
that 

For the proof 

%I e22, co9 in (1.1) 

the question of the behaviour of the solution of the Variational problem 
as E--,+0. 

sufficiently small E>O a constant c>O exists, independent of e, such 

UC(UC,UL)> c 11 uell"z (1.4) 

we estimate the least eigenvalue of the matrix of the elastic constants for 
independent of e . It is known that all the eigenvalues are positive for 

a synnnetric positive-definite matrix; the eigenvalues &,,A,,?,, of this matrix have the following 
orders: 

Ai = (1 + v)-‘, & - $1, 5 - (1 -v) t-h;* 

Obviously, A,, X3 > iz; let e < e, = z-';* (1 - v)"r p-1. Then 

Koxn 

Lenrma 2. For sufficiently small E>O a unique solution of problem (1.3) exists, where 
the following estimates, uniform in e, hold 

The validity of the second inequality in (1.5) follows from the validity of the second 
inequality in V /2/. 

II lLe IIV Q Cl3 Ii Uij (U’) /IL, Q Cp, i,j=1,2 (1.6) 
s-' I/ ain It:, Q C8, i = 1, 2, 3 

Indeed, the right side of (1.3) is a continuous linear functional in V, where by virtue 
of the embedding theorem ~L(u~)I<c,I!u~~!~. But o'(u'. ~~)>~~u~[v*frorn (1.5), and consequently, 
I/ UC I/v < Cl. The quadratic form 8(uL,ue) is, by virtue of positive-definiteness, represented 
as the sum of squares of linear forms of the strain; since the right side of (1.3) is estimated 
by a constant independent of e, we obtain the remaining estimates in (1.6). 

It followc from Lemma 2 that a subsequence (for which we keep the previous notation) can 
be extracted from the sequence uL such that of will converge weakly to a certain element 
uc E I', uII (uc) converges weakly tc ojj (uO) in V(i,j = 1,2), and ei, (UC)+ 0 strongly in L,(Q)> 
i = 1,2,3. 

Lemma 3. The functions ul'. uzc. uzC are representable in the form 

u30 = u3c (11. ~1). ~3' E Ho* (w) (1.i) 

~kC(rlrr2,rs)=gk (G.Iz) -+- 0 (a 12) w 

gk (~1. IA E Ho’ (01, k = l,Zk 

It actually follows from U&J \’ CL that b~~:.61~ = U, and consequently Lo' is independent 
of Ia. Furthermore, i! u:,Ik + u:,~,I~~ < CE. k = 1, 2, therefore, 
the trace of the function 

~1 I) = -u;,_~ and if gk (I,. ~~1 denotes 

U1,O in the plane {(z~, ZJE o,r,=O), we obtain (1.8). Functions 
belonging to Hl(Q, and equal to zero on the side surface are on the left side of the second 
equation, hence uJE E H,* (w) and gk EHol (01, k = 1, 2. 

Let l',i~ denote a closed subspace of V separated out by the conditions el 3 (L.) = 0. k = 

113 ._. . It is known /3/ that 1.x~ is isomorphic to IH,1(o)12 i: H,*(U). 
Let us examine the integral identity (1.3) in the functions UE I‘Jx. Passing to the 

limit in the subsequence already selected and integrating with respect to .r3. we obtain the 

integral identity 
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gl, = X3?&? k = I,2 

(or>, <gk> are averages over the plate thickness). The existence and uniqueness of the 

solution of the limit problem are well known/3,4/. It hence follows that the whole initial 
sequence uc converges weakly to u", i.e., the following holds: 

Theorem 1. The solution of problem (1.3) converges weakly to the solution of the limit 
problem (1.9). 

Apart from the coefficients, the variational problem (1.9) corresponds to the problem 
of the compression-tension and bending of a thin isotropic slab. However, it must be noted 

that the smallness of the normal stresses is not proved successfully here. 

Theorem 2. As z-t +0 the sequence ue converges strongly to u" in V. 
Indeed, we have 

UE (uc - ~0, UC - ~0) = L (UC - ~0) - Q,C (~0, tie - ~0) 

L (UC - u’) = 1 fk (uke - ~~0) dxl dq dza, 

aIF (u’, ue -- uOy= f \ [ (allell (u’) + alpetll (4 ell (uL - u’) + 
4 

(1.10) 

Since uE 

(a~61 (4 -+ 411ezz (4 e22 W - u4 + $& et2 (UC - u’) e12 (u’)] dq dzz dt3 

converges weakly to uC in V, then by the Rellich embedding theorem uL 

converges strongly to u0 in IL, (@I”, and consequently L(u’- u”)+ 0 as e + SO; fron: the 
weak convergence of eij(icC) to eit (U")(i, j = 1, 21 in IL, (Q)P it follows that a$ (u’, UL - 

u’) + 0 as e -+ +O. On the other hand 

ae(uc-u",ut-uo)> c Ij uL-uC(J1.* 

and from the convergence of the right side of (1.10) to zero there follows the convergence 
of the left to zero; consequently 11 ue - u'I/v+ 0 as e+ i-0. 

2. Certain singularly perturbed inequalities can also be studied. As an example, we 
consider the following Signorini problem. Let K be a closed convex cone in W= (U = (u,, u*, I+), 
U&=0 on y. (-h/Z,h/Z). uk~H~(Q),k= i,2,3), defined by the condition u,< 0 on the lower base 

PO of a cylinder. We examine the asymptotic behaviour of the solution of the inequality 

n~(U’,L’-~~)~(f,v-u~) YvczK, 11 = 12 = 0 (2.1) 

as e&+0. 
We associate a problem with a penalty with the inequality (2.1) 

We will study the behaviour of the non-linear problem (2.2) as e-+0. In this case 
the estimates (1.6) are conserved; consequently, a subsequence 11G.V can be extracted from 
the sequence ~=*a such that uCn~~- uO,q weakly in W and strongly in IL, (Q)j3, e,S (v'*?) - 0 (I = 1, 2, 3) 
strongly in L,(Q) and the limit functions ~~3" have the form (1.7) and (1.8). The family of 
traces of the function "C. 9 is here strongly compact in L, 0-L where r is the boundary of 

Q. Since jI=fr= O,g,(r~ = g?(s)= 0, the sole function different from zero is rri'"~H~*(e). 
We examine the integral identity (2.2) in the subspace VKL, we pass to the limit as 

e-+0, and we integrate over the height. 
integral identity 

We consequently obtain that u,"," satisfies the 

b (u;,", ~3) ++ s &'"I' us ds, dr, = h 
s cfi> d+, da, (2.3) 

w 0 

where b(u,q) is a bilinear form that is second on the left side of (1.9). Problem (2.3) is 
exactly the problem with a penalty on the contact of a plate with a stiff undeformable base. 

The existence of a unique solution of problem (2.3) is well known. Hence, the whole 
sequence "L. tl converges to I?~. 
&O, 0 

Passing to the limit as q-+0 in (2.31, we obtain that 
satisfies the variational inequality 

(2.4) 

Passage to the limit as n- +0 is given a foundation by known methods. 
The following therefore holds: 
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to 

1. 
2. 

3. 

4. 

Theorem 3. As e-+0 the solution of the variational inequality (2.1) converges weakly 
the solution of the variational inequality (2.4). 
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THE SUFFICIENT CONDITIONS FOR AN EXTREM~M IN PROBERS 
OF OPTIMIZING THE SHAPES OF ELASTIC PLATES * 

A.S. BRATDS' 

The problems of selecting the thickness distributions of elastic plates in 
order to maximize the fundamental free vibrations frequency, as well as 
to minimize the strain potential energy, are considered necessary and 
sufficient conditions are obtained for a weak local extremum in the such 
optimal design problems. These conditions retain their form even for 
reciprocal problems: minimization of plate weight when there are constraints 
on the fundamental frequency or the strain potential energy. The conditions 
obtained include an integral estimate on the maximum growth of second 
derivatives of the thickness distributions that satisfy the necessary 
extremum conditions. 

Problems on optimizing the shape of elastic plates have been solved 
numerically /l-8/. It has been proved /9/ that these problems cannot have 
a strong extemum. It is shown /lO,ll/ that for solutions to exists it is 
sufficient to improve integral constraints on the nature of the growth 
of the derivatives of the allowable thickness distributions. 

1, Formulation of the problem. Consider a plate of variable thickness h (2, Y) 
clampedalong a piecewise-smooth contour r bounding the domain D in the ry plane. Let S 
be the area of the domain D and V the volume of the plate. In the undeformed state the plate 
middlesurface coincides with the domain L). The plate is simply supported on the part r1 of 
theboundary r , and rigidly clamped on the remaining part r2. The function of plate 
deflectionsis denoted by X(X, y). We introduce the dimensionless variables 

2' = f‘Y', y' = ys-":, h' (x3 'y) = h (2, @f ST"' (1.1) 

The problem of the frequencies of free vibrations has the following form in the notation 
used (we omit the primes on the dimensionless variables): 

4 (!?! U: (I, y) = Xhw (2, y), )i = 12 (i - ~~)a??S~i’-~d (1.2) 

(ugr = 0 ($I=, = 0, p (AZ0 - + -&))r* = 0 (1.3) 

a= 
A(Ir)=~Irs(~+~~j+~haj~i_~~j+2(f--Y)~h3- i32.3y dr by Wf 

Here E is Young's modulus, v is Poisson's ratio, 0 is the frequency of free vibrations, 
aw:an is the derivative with respect to the external normal to r, R is the radius of 
curvature, and A is the Laplace operator. 

In the variables (1.1) the static bending problem of a plate loaded by a transverse force 
p(z y) has the form 

A (h) ic (r. y) = q (z, y), q = f2 (1 - vp) F'S-';*I'+p (I, y) (1.5) 

where the differential operator A (h)is given by (1.4), and the function TV' satisfies the 
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